文章目录
电磁波产生的原理是变化的电场会产生磁场(即电流会产生磁场),变化的磁场则会产生电场。变化的电场和变化的磁场构成了一个不可分离的统一的场,这就是电磁场,而变化的电磁场在空间的传播形成了电磁波。
电磁波频率低时,主要借由有形的导电体才能传递。原因是在低频的电振荡中,磁电之间的相互变化比较缓慢,其能量几乎全部返回原电路而没有能量辐射出去;电磁波频率高时即可以在自由空间内传递,也可以束缚在有形的导电体内传递。
在自由空间内传递的原因是在高频率的电振荡中,磁电互变甚快,能量不可能全部返回原振荡电路,于是电能、磁能随着电场与磁场的周期变化以电磁波的形式向空间传播出去,不需要介质也能向外传递能量,这就是一种辐射。
举例来说,太阳与地球之间的距离非常遥远,但在户外时,仍然能感受到和煦阳光的光与热,这就好比是“电磁辐射借由辐射现象传递能量”的原理一样。
电磁波频谱的范围极其宽广,是一种巨大的资源和电波传播的研究对象。主要研究几赫(有时远小于1赫)到 3000GHz的无线电波(极长波到毫米波),同时也研究3000GHz到384THz的红外线、384THz到770THz的光波的传播问题。
电波传播所涉及的媒质有地球(地下、水下和地球表面等)、地球大气(对流层、电离层和磁层等)、日地空间以及星际空间等。这些媒质多数是自然界存在的,但也有人工产生的媒质,如火箭喷焰等离子体和飞行器再入大气层时产生的等离子体等。
它们也是电波传播的研究对象。主要研究地下电波传播、地波传播、对流层电波传播、电离层电波传播和磁层电磁波等。这些媒质的结构千差万别,电气特性各异。但就其在传播过程中的作用可以分为3种类型:
①
连续的(均匀的或不均匀的)传播媒质。如对流层和电离层等。
②媒质间的交界面(粗糙的或光滑的)。如海面和地面等。
③离散的散射体。如雨滴、雪、飞机、导弹等,它可以是单个的,也可以是成群的。
由于这些媒质的特性多数随时间和空间而随机地变化,所以与它相互作用的波的幅度和相位也随时间和空间而随机变化。因此,媒质和传播波的特性需要用统计方法来描述。
参考资料来源:-电磁波
电磁波产生原理图解从科学的角度来说,电磁波是能量的一种,凡是能够释出能量的物体,都会释出电磁波。
产生:
电磁波是电磁场的一种运动形态。电与磁可说是一体两面,变动的电会产生磁,变动的磁则会产生电。变化的电场和变化的磁场构成了一个不可分离的统一的场,这就是电磁场,而变化的电磁场在空间的传播形成了电磁波,电磁的变动就如同微风轻拂水面产生水波一般,因此被称为电磁波,也常称为电波。
性质:
电磁波频率低时,主要藉由有形的导电体才能传递。原因是在低频的电振荡中,磁电之间的相互变化比较缓慢,其能量几乎全部反回原电路而没有能量辐射出去;电磁波频率高时即可以在自由空间内传递,也可以束缚在有形的导电体内传递。在自由空间内传递的原因是在高频率的电振荡中,磁电互变甚快,能量不可能全部反回原振荡电路,于是电能、磁能随着电场与磁场的周期变化以电磁波的形式向空间传播出去,不需要介质也能向外传递能量,这就是一种辐射。举例来说,太阳与地球之间的距离非常遥远,但在户外时,我们仍然能感受到和勋阳光的光与热,这就好比是「电磁辐射藉由辐射现象传递能量」的原理一样。
电磁波为横波。电磁波的磁场、电场及其行进方向三者互相垂直。振幅沿传播方向的垂直方向作周期性交变,其强度与距离的平方成反比,波本身带动能量,任何位置之能量功率与振幅的平方成正比。
其速度等于光速c(每秒3×10的8次方米)。在空间传播的电磁波,距离最近的电场(磁场)强度方向相同,其量值最大两点之间的距离,就是电磁波的波长λ,电磁每秒钟变动的次数便是频率f。三者之间的关系可通过公式c=λf。
通过不同介质时,会发生折射、反射、绕射、散射及吸收等等。电磁波的传播有沿地面传播的地面波,还有从空中传播的空中波以及天波。波长越长其衰减也越少,电磁波的波长越长也越容易绕过障碍物继续传播。
很多效应都可以发射电磁波。电磁波谱你应该知道的,就是波长最长的无线电长波,到中波,短波,微波,然后是红外,可见光,紫外,X光,直到波长最短的伽玛射线
下面列举目前已知的发射电磁波的方式:
1、热辐射。
只要是温度高于绝对零度的物体(其实就是所有物体,迄今我们认为不可能有物体达到绝对零度)都会辐射电磁波。但是辐射的强度和波长分布与物体的温度有关。例如铁块在室温下发出的电磁波你根本看不到,大约是红外线居多(所谓红外测温原理,就是测量此时辐射的红外线。),当它烧红的时候,开始辐射红色光,再加热,会变蓝变白,说明温度越高,发射的主要波长越短。
应用距离:白炽灯,就是靠钨丝加热到一定温度向外辐射光的。火把,最原始的照明工具,也主要是靠这一原理的。
2、电磁振荡与天线组合
手机、电台、卫星电视台等等利用电磁波进行通讯的设备,都是靠振荡电路和天线的组合来发射电磁波的。只要磁场或者电场发生振荡变化,就会辐射电磁波。只是辐射的效率不同。振荡电路就是一种可以产生一定频率的振荡电流的电路。电流振荡会引起电流产生的电场或者磁场的振荡。既然已经产生了电场/磁场的振荡了,就会发出电磁波,那干吗要天线呢?这是因为天线的形状可以增大产生电磁波的效率。
应用举例:手机、电台、通讯卫星、卫星电视台、对讲机、无绳电话等等各种使用电磁波通讯的设备
微波炉也是靠振荡电流发射微波的,只是这个振荡并不发生在导线里,而是发生在真空管里。原理是一样的。
3、外层电子越迁辐射。
这类电磁波产生的原理是原子或者分子的外层电子,从高能级态向低能级态越迁的时候,辐射出电磁波。这种辐射的范围从红外到紫外都有可能。为了实现这种越迁,我们首先要把外层电子从低能级态移动到高能级态(又被称作原子或分子被激发到了高能级)。这里我们分开讨论
3.1利用气体电离,从而使气体分子/原子到达高能级态
这种方法,一般是在真空玻璃容器中充满某种气体,然后用高压击穿该气体使得其电离,从而将其激发到高能级态
应用举例:探照灯使用的高压汞(发光的是汞蒸汽)灯,氙气(发光的是氙气)灯,还有早期的电弧灯(发光的是空气)
3.2直接利用电流激发到高能级
这种方法,是直接利用电流通过某种材料,将该材料激发到高能级的。
应用举例:发光二极管,液晶。
3.3利用其他光源将其激发至高能级
这种方法,是利用其他光源发出的频率较高的光,将某材料激发到高能级,然后它越迁回低能级发光的。
应用举例:日光灯(其内部是低压汞蒸汽,被电流击穿电离发出紫外线,属于3.1中介绍的原理。但是这些紫外线照射到荧光灯表面涂的荧光材料上,荧光材料被激发到高能级,再越迁回低能级,发出了可见光),夜光笔,夜光表:白天吸收阳光,激发到高能级,晚上慢慢越迁回来,发光
3.4利用化学反应释放的能量使材料中的分子或原子激发到高能级
举例:萤火虫,冷光棒(一种弯折后可以发出冷光的照明用具)。另外,刚刚说了,燃烧主要是利用原理1,但是燃烧中也会附带有一定的这个原理。焰色反应就是靠燃烧中激发某种材料到高能级,再越迁回低能级产生的。
3.5激光。
其实激光的产生原理就是3.1-3.4,但是作为一种特殊的光源,我们单独讨论。激光的特点是,由于泵浦源将材料激发(这里的泵浦源,或者说激发的原理,就是3.1-3.4了),其材料一直停留在高能级,当受到激发的时候,突然全部跳到低能级,从而发出强大的脉冲,再加上谐振腔的作用,发出高质量的光。
举例:氦氖激光器用了原理3.1,半导体激光器用了原理3.2,很多固体激光器都需要其他激光器来泵浦用了3.3,而染料激光器有些用了原理3.4。
4、原子内层电子被激发,越迁回原位发光
这种原理发出的光,叫做X光。激发方法有很多,常见的是用一束电子流去轰击原子。
5、原子核被激发到高能级,越迁回低能级
这种原理发出的光一般叫做伽玛射线。原子核被激发的原因有很多,自然界的核聚变、裂变、衰变。人工使用粒子轰击原子核,都会造成激发,从而发出伽玛射线。
另外,这种过程也有可能激发内层电子,或者间接激发外层电子,从而附带有原理3和原理4描述的现象发生。
6、各种微观高能粒子反应发光。
例如,正负电子湮灭,某种粒子寿命到了消失等过程,发出的电磁波。这种现象在大气层内比较少见,而物理学实验中会做到。
导电的金属能对电磁波产生反射,吸收,和抵消等作用。从而起到减少电磁波辐射的作用。
不过当然不是随便什么金属都能起到屏蔽作用的:
(1)当干扰电磁场的频率较高时,利用低电阻率的金属材料中产生的涡流,形成对外来电磁波的抵消作用,从而达到屏蔽的效果。
(2)当干扰电磁波的频率较低时,要采用高导磁率的材料,从而使磁力线限制在屏蔽体内部,防止扩散到屏蔽的空间去。
(3)在某些场合下,如果要求对高频和低频电磁场都具有良好的屏蔽效果时,往往采用不同的金属材料组成多层屏蔽体。
同时还要要求是整个屏蔽体表面必须是导电连续的,本且是不能有直接穿透屏蔽体的导体。这样才能起到良好的屏蔽作用。
除了金属,只要是导电良好的材料都可以作为电磁屏蔽。比如:导电橡胶,金属网,有机导电材料等。
参考资料:
别人的
从科学的角度来说,电磁波是能量的一种,凡是能够释出能量的物体,都会释出电磁波。
产生:
电磁波是电磁场的一种运动形态。电与磁可说是一体两面,变动的电会产生磁,变动的磁则会产生电。变化的电场和变化的磁场构成了一个不可分离的统一的场,这就是电磁场,而变化的电磁场在空间的传播形成了电磁波,电磁的变动就如同微风轻拂水面产生水波一般,因此被称为电磁波,也常称为电波。
性质:
电磁波频率低时,主要藉由有形的导电体才能传递。原因是在低频的电振荡中,磁电之间的相互变化比较缓慢,其能量几乎全部反回原电路而没有能量辐射出去;电磁波频率高时即可以在自由空间内传递,也可以束缚在有形的导电体内传递。在自由空间内传递的原因是在高频率的电振荡中,磁电互变甚快,能量不可能全部反回原振荡电路,于是电能、磁能随着电场与磁场的周期变化以电磁波的形式向空间传播出去,不需要介质也能向外传递能量,这就是一种辐射。举例来说,太阳与地球之间的距离非常遥远,但在户外时,我们仍然能感受到和勋阳光的光与热,这就好比是「电磁辐射藉由辐射现象传递能量」的原理一样。
电磁波为横波。电磁波的磁场、电场及其行进方向三者互相垂直。振幅沿传播方向的垂直方向作周期性交变,其强度与距离的平方成反比,波本身带动能量,任何位置之能量功率与振幅的平方成正比。
其速度等于光速c(每秒3×10的8次方米)。在空间传播的电磁波,距离最近的电场(磁场)强度方向相同,其量值最大两点之间的距离,就是电磁波的波长λ,电磁每秒钟变动的次数便是频率f。三者之间的关系可通过公式c=λf。
通过不同介质时,会发生折射、反射、绕射、散射及吸收等等。电磁波的传播有沿地面传播的地面波,还有从空中传播的空中波以及天波。波长越长其衰减也越少,电磁波的波长越长也越容易绕过障碍物继续传播。